The Influence of *trans*-Ligands on the Co–NO₂ Bond Length in Mixed Cobalt(III) Complexes

By RAJNA HERAK

(Laboratory of Solid State Physics and Radiation Chemistry, 'Boris Kidrič' Institute, 11001 Belgrade, PO Box 522, Yugoslavia)

and Nenad Juranić* and Milenko B Celap

(Institute of Chemistry, Faculty of Sciences, University of Belgrade, 11001 Belgrade, PO Box 550, Yugoslavia)

Summary An X-ray crystal structure investigation of 12 cobalt(III) complexes has shown that the Co-NO₂ bond length 1s shorter by an average of 0.05 Å when trans-to carboxylato-oxygen than when trans- to a nitrogen ligator

FROM X-ray crystal structure investigations reported for twelve cobalt(III) complexes (see the Table), which, besides other ligands, contain NO_2^- group(s), we have observed the influence of *trans*-ligands on the Co-NO₂ bond length In 6 compounds, containing amino acid carboxylatooxygen *trans* to the NO_2^- group, the Co-NO₂ bond length is shorter by an average of 0.05 Å than the same bond when *trans* to ammonia, the NO_2^- group, or the amino nitrogen of aminocarboxylato and diamine ligands (Table) This influence is not noticeable in other Co-ligand bonds, *i e* Co-NH₂, Co-NH₂ (amino acid), Co-NH₂ (diamine), and Co-O (amino acid) In this way the Co-NO₂ bond length appears to be especially sensitive to a carboxylato-oxygen in a *trans*-position

The nature of the NO_2^- ligand bonding in octahedral complexes is not completely understood and seems to differ considerably from that in square-planar complexes In

the square-planar complexes the NO_2^- ligand position in the spectrochemical series,¹ as well as its pronounced trans-effect,²⁻⁴ indicate that a considerable electron density back-donation from the metal d_{π} -orbital to a vacant π antibonding orbital of the NO⁻/₂ group occurs ⁵ In contrast with this, in octahedral complexes the trans-effect of the NO_2^- group is weakly pronounced³ and this has been explained in terms of a difficulty in π -bond formation due to steric effects However, the biphilicity of the $NO_2^$ group observed during octahedral substitution reactions⁶ shows that π -bond participation in the NO₂ group-metal bonding also occurs in octahedral complexes Therefore, the observed influence of carboxylato-oxygen, in a transposition, on the Co-NO₂ bond strength might be significant when considering the importance of the π -bonding of the NO₂ group in octahedral complexes The observed transinfluence can be explained well by π -bonding participation in Co-NO₂ bond formation The carboxylato-oxygen, as a π -donor, allows the d_{π}-orbitals to become antibonding to some extent, leading to the destabilization of the complex In that case, the formation of the π -bond between the metal and the NO_2^- ligand in a trans-position to the TABLE. The dependence of the Co-NO₂ bond length (Å) in the investigated complex on the ligand in a trans-position and the corresponding angles (°) of the mean plane of the NO_2 group to the principal axes of the complex.

	$Co-NO_2$ bond length (Å) trans- to					
Complex	0	NO ₂	NH2	NH3	Angle (°)	Reference
trans, trans, trans-K[Co(β -ala) ₂ (NO ₂) ₂] ^a		1.940(10)			90.4	8
$(-)_{589}$ -trans- (NO_2, NH_2) -trans- N - $[Co(L-his)_2NO_2]$ · H_2Ob			1.954(12)		16.5	9
$trans-[Co(tn)_2(NO_2)_2]NO_2^a$		1.926(6)			91.4	10
$(+)_{589}$ -trans- (NO_2, NH_2) -Ba[Co(glygly)-						
$(D-ala)NO_2$]Cl·4H ₂ O			1.936		34.8	11
$trans-[Co(tn)(\beta-ala)(NO_2)_2]$		1.912(5)			88.0	12
		1.980(6)			85.5	
$cis-(NO_2)-mer-(NH_2)-[Co(tn)(\beta-ala)(NO_2)_2]\cdot H_2O$	1.892(4)		1.937(4)		$35 \cdot 1$	13
cis-(NO ₂ ,NH ₃)-trans-(NH ₂)-[CoNH ₃ (gly) ₂ NO ₂]·H ₂ O	1.875(7)				35.5	14
$(+)_{589}$ -cis- (NO_2) -trans- (NH_3, NH_2) -						
$\left[\operatorname{Co}(\mathrm{NH}_3)_2(\mathrm{L-ala})(\mathrm{NO}_2)_2\right]$	1.894(2)			1.942(3)	40.1	15
mer-trans-(NH ₃ ,NH ₂)-K[Co(NH ₃)(gly)(NO ₂) ₃]·H ₂ O	1.891(7)	1.920(7)			$3 \cdot 6$	16
		1.929(7)				
$(+)_{589}$ -cis-Ag[Co(D-ala) ₂ (NO ₂) ₂] ^a	1.87(2)				$32 \cdot 1$	17
cis -[$Co(tn)_2(NO_2)_2$]Cl·H ₂ O			1.924(3)		34.5	18
			1.936(3)		35.3	
$(+)_{589}$ -cis-[Co(L-arg) ₂ (NO ₂) ₂]NO ₃ ·2H ₂ O	1.894(7)				35.4	19
	1.941(7)				$32 \cdot 4$	

^a The complex ion has an element of symmetry ($\overline{1}$ or 2). ^b N is the nitrogen atom belonging to the imidazole ring. alaH = alanine; hisH = histidine; tn = 1,3-diaminopropane; glyglyH₂ = glycylglycine; glyH = glycine; argH = arginine.

carboxylato-oxygen is favoured, since the electron density shifts through the d_{π} -orbitals to the vacant π -antibonding orbital of the NO_2^- ligand. Therefore, the participation of the π -bond could be expected to be more pronounced and the Co-NO₂ bond length to be shorter when the $NO_2^$ ligand is trans to a carboxylato-oxygen than when it is trans to a σ -bonded nitrogen. A corresponding bond length shortening has actually been observed, indicating π -bond participation in NO2 bonding in CoIII complexes. However, in all the compounds the mean plane of the $NO_2^$ group when trans to the carboxylato-oxygen (and also in many other cases) is inclined to the principal axis of the complex at an angle of $30-40^{\circ}$ (Table). Thus the possibility of π -bond formation with d_{π} -orbitals is reduced, though not excluded.⁷ The shifting of the electron density from carboxylato-oxygen through the metal d_{π} -orbitals to the vacant π -antibonding orbital of the NO₂⁻ ligand should have been reflected also in lengthening of the N-O bonds. There is no detectable evidence for this from the X-ray crystallographic data, however.

On the basis of the above, there is no straightforward conclusion as to the character of the $\mathrm{M-NO}_2$ bond in octahedral complexes. The observed NO₂ ligand characteristics are most likely determined by a competition between the tendency for π -bond formation and the steric influences of the *cis*-ligand.

(Received, 10th March 1980; Com. 262.)

¹ J. L. Burmeister, Coord. Chem. Rev., 1966, 1, 205.

- ¹ A. A. Grinberg, 'Vvedenie v khimiyu kompleksnih soedinenii,' Izdatelstvo 'Khimiya,' 1971, pp. 360-362.
 ³ F. Basolo and R. G. Pearson, Prog. Inorg. Chem., 1962, 4, 381.
 ⁴ R. Hartley, Chem. Soc. Rev., 1973, 2, 163.
 ⁵ H. B. Gray, 'Electrons and Chemical Bonding,' W. A. Benjamin, Inc., New York, 1965, pp. 151, 198-191.
 ⁶ R. Bariel, Watan (Local Method 1002) 104 1106.

- ⁶ B. Bosnich, Nature (London), 1962, 196, 1196.

⁹ J. B. Bersuker, 'Stroyenie i svoistva koordinatsionnih soedinenii,' Izdatelstvo 'Khimiya,' 1971, p. 210. ⁸ B. Prelesnik, M. B. Celap, and R. Herak, *Inorg. Chim. Acta*, 1973, 7, 569. ⁹ R. M. Herak, B. Prelesnik, B. Kamberi, and M. B. Čelap, XI International Congress of Crystallography, Warszawa 1978, Coll. Abstr., p. 5399.

- ¹⁰ I. Krstanović and M. B. Celap, Crystallog. Struct. Commun., 1977, 6, 171.
- ¹¹ R. Herak, Lj. Solujić, I. Krstanović, B. Prelesnik, and M. B. Celap, Proceedings of the Yugoslav Centre of Crystallography, 1978, 13, in the press.
- R. M. Herak, M. B. Celap, and I. Krstanović, Acta Crystallogr., Sect. B, 1977, 33, 3368.
 R. Herak, M. Jeremić, and M. B. Celap, Acta Crystallogr., Sect. A, 1975, 31, 5142.

 ¹⁴ P. Vasić, R. Herak, and S. Djurić, Acta Crystallogr., Sect. B, 1976, 32, 91.
 ¹⁵ R. M. Herak, K. W. Muir, and Lj. Manojlović-Muir, Proceedings of the Yugoslav Centre of Crystallography, 1974, 9, 76; Acta Crystallogr., in the press.

- ¹⁶ R. Herak and B. Prelesnik, Z. Anorg. Allg. Chem., 1976, 427, 91.
 ¹⁷ R. Herak and B. Prelesnik, Lj. Manojlović-Muir, and K. W. Muir, Acta Crystallogr., Sect. B, 1974, 30, 229.
 ¹⁸ G. Srdanov, R. Herak, and B. Prelesnik, Inorg. Chim. Acta, 1979, 33, 23.
- ¹⁹ W. H. Watson, D. R. Johnson, M. B. Celap, and B. Kamberi, Inorg. Chim. Acta, 1972, 6, 591.